Stat 201: Introduction to Statistics

Standard 23 - Sampling Distributions for Sample Means

Recall Definitions from Ch 2

- Statistic: numerical summary of a sample
- Mean(\bar{x}), proportion(\hat{p}),median, mode, standard deviation(s), variance $\left(s^{2}\right)$, Q1, Q3, IQR, etc.
- We use US alphabet letters to denote these
- Parameter: numerical summary of a population
- Mean $\left(\mu_{x}\right)$, proportion (ρ), median, mode, standard deviation (σ), variance $\left(\sigma^{2}\right)$, Q1, Q3, IQR, etc.
- We usually don't know these values
- We use Greek letters to denote these

Sampling Distributions

- Intro: https://www.youtube.com/watch?v=DmZJ1bIQOns
- A sampling distribution is the probability distribution that specifies probabilities for the possible values of the mean or proportion.
- Proportions - consider the Binomial from Chapter 6
- Means - consider the standard normal from Chapter 6
- A sampling distribution is a special case of a probability distribution where the outcome of an experiment that we are interested in is a sample statistic such as a sample proportion (\widehat{p}) or sample mean (\bar{x})
- It's the same as what we were doing before, but now instead of singular observations we're looking at groups

Sampling Distributions

- This is confusing.
- Remember, before we talked about events and random variables in n trials
- Now, we're talking about m groups of n trials which yield m sample means or m sample proportions
- $\bar{x}_{i}=\frac{\sum x}{n}$ for $i=1,2, \ldots, m$
- $\widehat{p}_{i}=\frac{x}{n}$ for $i=1,2, \ldots, m$

Sampling Distributions

- Variable: Gender of Students
- Before, we measured individuals:

- Now, we have one measurement across groups:

Sampling Distributions

- Variable: Heights of Americans
- Before, we measured individuals:

- Now, we have one measurement across groups:

Sampling Distribution - Graphs

- Sample vs. Population: the sampling distribution is narrower than the population because grouping the data reduces the variation; pay attention to the standard error equations

Sampling Distributions: Means

- This first sampling distribution we'll talk about is the sampling distribution for the sample mean.
- The idea is that there is some true population mean out there, μ, but it might not be feasible to know it
- We may not have enough time or money to poll the population
- It may be infeasible to get a population measure

Sampling Distributions: Means

- Instead, we look at sample mean, \bar{x}, the mean of quantitative observations
- We've looked at this before in the descriptive statistics but now we're going to talk about all possible sample means from repeated random samples from our population

Sampling Distributions: Means

- Before we had quantitative observations: $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- We would summarize all x's with one sample mean, one $\overline{\boldsymbol{x}}$
- $\bar{X}=\frac{\text { the sum of } \mathrm{x}^{\prime} \mathrm{s}}{\text { the total sample size }}=\frac{\sum x}{\mathrm{n}}$
$=$ the mean of the observations in our sample

Sampling Distributions: Means

- Now we have \mathbf{m} groups of \mathbf{n} subjects with categorical observations:
$\left\{x_{1,1}, x_{1,2}, x_{1,3}, \ldots, x_{1, n}\right\},\left\{x_{2,1}, x_{2,2}, x_{2,3}, \ldots, x_{2, n}\right\}$,
$\ldots,\left\{x_{m, 1}, x_{m, 2}, x_{m, 3}, \ldots, x_{m, n}\right\}$
- Now, we find summary statistics for each group $\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}, \ldots, \overline{x_{m}}$
- We have m sample means, one \bar{x} for each group
- $\overline{x_{1}}=\frac{\text { the sum of } \mathrm{x}^{\prime} \text { s from group } 1}{\text { the total sample size of group } 1}=\frac{\sum x}{\mathrm{n}}$
- $\overline{x_{2}}=\frac{\text { the sum of } \mathrm{x}^{\prime} \text { s from group } 2}{\text { the total sample size of group } 2}=\frac{\sum x}{\mathrm{n}} \ldots$
- $\overline{x_{m}}=\frac{\text { the sum of } \mathrm{x}^{\prime} \text { s from group } m}{\text { the total sample size of group } m}=\frac{\sum x}{\mathrm{n}}$

Sampling Distributions: Means

- You could think of each group as a barrel and we're only interested in the mean of each barrel; we are no longer interested in the individual responses
- The example below shows how we could summarize 40 observations, into four representative sample means

$$
\overline{x_{1}}
$$

Sampling Distribution - Mean and SD

- The mean of the sampling distribution for a sample mean will always equal the population mean: $\mu_{\bar{x}}=\mu_{x}$
- This is the mean of all possible sample means, but we note that some $\overline{\boldsymbol{x}}$ will be lower and some will be higher

Sampling Distribution - Mean and SD

- Think about it this way:
- Q: If the population mean of time Americans spend on social media is 100 minutes with a standard deviation of 25 minutes what would you expect the average time a sample of 35 Americans spent on social media?
- A: 100 minutes is our best guess.
- Later, we'll do this the other way around and we will call \bar{x} the point estimate for μ_{x} since it's our best guess for the population mean if we don't know it

Sampling Distribution - Mean and SD

- The standard error, the standard deviation of all possible sample means, is:

$$
\begin{aligned}
\boldsymbol{\sigma}_{\bar{x}}= & \frac{\boldsymbol{\sigma}_{x}}{\sqrt{\boldsymbol{n}}} \\
& =\operatorname{St} . \boldsymbol{\operatorname { D e v }}\left(\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}, \ldots, \overline{x_{m}}\right)
\end{aligned}
$$

Sampling Distribution - Mean and SD

- Think about it this way:
- Q: If our best guess for $\boldsymbol{\mu}$ is \bar{x} we need a measure of reliability for our estimate
- A: We'll talk more about this later, but our standard error calculator is a big part of this
- Later, in the case we don't know μ_{x} or σ_{x} we're estimating it with our point estimate $\overline{\boldsymbol{x}}$
- Recall: $\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$
- Consider: $\frac{s_{x}}{\sqrt{n}}$ [Note: we estimate $\sigma_{x}=\boldsymbol{s}_{x}$]

Sampling Distribution - Mean and SD

- The mean of the sampling distribution for a sample mean will always equal the population mean: $\mu_{\bar{x}}=\mu_{x}$
- This is the mean of all possible sample means, but we note that some \bar{x} will be lower and some will be higher
- The standard error, the standard deviation of all possible sample means, is:

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}
$$

Sampling Distribution - Mean and SD

- $\mu_{\bar{x}}=$ mean of all sample means $=\mu_{x}$
- Even though we know the mean is the population mean, we note that some \bar{x} will be lower and some will be higher
- $\sigma_{\bar{x}}=$ the std.dev. of all sample means $=\frac{\sigma_{x}}{\sqrt{n}}$
- Aside:
- What if we increase n ?
- The standard deviation shrinks
- What if we decrease n ?
- The standard deviation grows

Sampling Distribution:

- Now that we know the mean and standard error of the sample means we can calculate zscores to find some probabilities associated with sample means just like we did before.

$$
z=\frac{\begin{array}{c}
\boldsymbol{\mu}_{\bar{x}}=\boldsymbol{\mu}_{\boldsymbol{x}} \\
\boldsymbol{\sigma}_{\bar{x}}=\frac{\boldsymbol{\sigma}_{x}}{\sqrt{\boldsymbol{n}}}
\end{array}}{\text { observation }- \text { mean }} \begin{gathered}
\text { st.dev }
\end{gathered} \frac{\bar{x}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}=\frac{\bar{x}-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}
$$

Sampling Distribution:

$$
\begin{gathered}
\boldsymbol{P}(\bar{x}>\boldsymbol{c})=1-P\left(z<\frac{c-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)=1-P\left(z<\frac{c-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right) \\
\boldsymbol{P}(\bar{x}<\boldsymbol{c})=P\left(z<\frac{c-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)=P\left(z<\frac{c-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right) \\
\begin{array}{r}
P\left(\boldsymbol{c}_{1}<\bar{x}<\boldsymbol{c}_{2}\right)=P\left(z<\frac{c_{2}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)-P\left(z<\frac{\boldsymbol{c}_{1}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right) \\
\\
=P\left(z<\frac{c_{2}-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right)-P\left(z<\frac{\boldsymbol{c}_{1}-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right)
\end{array}
\end{gathered}
$$

Sampling Distribution Example 1

- The students that live in University of South Carolina Dormitories throw away an average of 600,000 beer cans per month with a standard deviation of 100,000 cans.
- Find the mean and standard error of the sampling distribution for the sample mean with $\mathrm{n}=48$ months.
- Let's find the sampling distribution!

Sampling Distribution Example 1

- Let's find the sampling distribution mean:
- $\mu_{\bar{x}}=$
the mean of all possible sample means
$=\mu_{x}=$ the population mean $=600,000$
- Some $\overline{\boldsymbol{x}}$ will be lower and some will be higher but the mean of all sample means of $n=4$ months will be 600,000

Sampling Distribution Example 1

- Let's find the sampling distribution st. deviation:
- $\sigma_{\bar{x}}=$ standard error
$=$ the standard deviation of all possible
samplepue,000s of $n=4$ months
$=\frac{\sigma_{x}}{\sqrt{n}}=\frac{100,000}{\sqrt{48}}=14433.7567$
\sqrt{n} andard $\sqrt{48} r$, the standard deviation of all possible Il possible sample means of $n=48$ months, is

Sampling Distribution Example 1

- Let's find the sampling distribution:
- $\mu_{\bar{x}}=\mu_{x}=600,000$
- $\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{100,000}{\sqrt{48}}=14433.7567$

Sampling Distribution Example 1

- What is the probability that the sample mean number of beer cans thrown away per month for the University of South Carolina Dormitories for a random sample of four months is less than 550,000 ?
- $\mathrm{P}(\bar{x}<550,000)=P\left(Z<\frac{550,000-600,000}{\frac{100,000}{\sqrt{48}}}\right)=$
$\mathrm{P}\left(\mathrm{Z}<\frac{550,000-600,000}{14433.7567}\right)=\mathrm{P}(\mathrm{Z}<-3.46)=.0003$

Sampling Distribution Example 1

- What is the probability that the sample mean number of beer cans thrown away per month for the University of South Carolina Dormitories for a random sample of four months is less than 550,000?
- $\mathrm{P}(\bar{x}<550,000)=.0003$
- This is an very unusual occurrence, we only see less than 550,000 cans thrown away .03\% of the time
- Note: this assumes the number of beer cans thrown away follows the normal distribution - you'll see why soon.

Sampling Distributions - Example 2

- Say, we know that the average American spends 100 minutes on social media per day with a standard deviation of $\mathbf{2 5}$ minutes.
- What is the sampling distribution of the sample mean of time Americans spend on social media for $n=35$?
- Note, we aren't interested in the individuals but the group of thirty five
- Here, $X=$ the proportion of the ten Americans in each group

Sampling Distributions - Example 2

- Say, we know that the average American spends 100 minutes on social media per day with a standard deviation of $\mathbf{2 5}$ minutes.
- What is the sampling distribution of the sample mean of time Americans spend on social media for $n=35$?
- $\mathrm{n}=$ sample size = sample size of thirty five $=35$
- $\mu_{x}=$ population mean $=100$
- $\sigma_{x}=$ population standard deviation $=25$

Sampling Distributions - Example 2

- Let's find the sampling distribution mean:
- The mean of all sample means of $\mathbf{n}=\mathbf{3 5}$
$=\mu_{\bar{x}}=\mu_{x}=100$
- Some $\overline{\boldsymbol{x}}$ will be lower and some will be higher but the mean of all sample means of $n=35$ will be 100

Sampling Distributions - Example 2

- Let's find the sampling distribution st. error:
- The st. deviation of all sample means of $\mathbf{n}=\mathbf{3 5}$
= Standard Error

$$
=\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{25}{\sqrt{35}}=4.2258
$$

Sampling Distributions - Example 2

- Let's find the sampling distribution:

$$
\begin{gathered}
\mu_{\bar{x}}=\mu_{x}=100 \\
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{25}{\sqrt{35}}=4.2258
\end{gathered}
$$

Sampling Distributions - Example 2

- The probability that a sample of $\mathrm{n}=35$ spend more than two hours on social media on average:

$$
\begin{aligned}
P(\bar{x}>120) & =P\left(z>\frac{120-100}{4.2258}\right)=P(Z>4.73) \\
= & 1-P(Z<4.73) \approx 1-1 \\
= & 0
\end{aligned}
$$

Sampling Distributions - Example 2

- The probability that a sample of $\mathrm{n}=35$ spend less than one hour on social media on average:

$$
\begin{aligned}
P(\bar{x}>60) & =P\left(z<\frac{60-100}{4.2258}\right)=P(Z<-9.47) \\
= & P(Z<-9.47) \\
& \approx 0
\end{aligned}
$$

Sampling Distributions - Example

- The probability that a sample of $\mathrm{n}=35$ spend between 1 and 1.5 hours on social media on average:

$$
\begin{aligned}
P(60 & <\bar{x}<90)=P\left(\frac{90-100}{4.2258}<z<\frac{60-100}{4.2258}\right) \\
& =P(Z<-2.37)-P(Z<-9.47) \\
& \approx .0089-0 \\
& =0
\end{aligned}
$$

Sampling Distributions - Example

- Note: we had to assume normality of \bar{x} to use the Z-score transformation to solve the previous probabilities
- We are able to make that assumption unlocking all of the nice methodologies of the Normal distribution - by utilizing the central limit theorem

Central Limit Theorem: Means

- For random sampling with a large sample size n, the sampling distribution of the sample mean is approximately a normal distribution
- For us, 30 is close enough to infinity
- Introduction:
- https://www.youtube.com/watch?v=Pujol1yC1 A

Central Limit Theorem: Means

1) For any population the sampling distribution of \bar{x} is bell shaped when the sample size n is large, when n is thirty or more
2) The sampling distribution of \bar{x} is bell-shaped when the population distribution is distribution is bell-shaped, regardless of sample size
3) We do not know the shape of the sampling distribution of \bar{x} if the sample size is small and the population distribution isn't bell-shaped

Central Limit Theorem

For any population the sampling distribution of \bar{x} is bell shaped when the sample size n is large, when n is thirty or more
Note: for small sample size we can't say this.
Population
\bar{x} when $\mathrm{n}=2 \quad \bar{x}$ when $\mathrm{n}=30$

Central Limit Theorem

The sampling distribution of $x_{b a r}$ is bell-shaped when the population distribution is distribution is bell-shaped, regardless of sample size

Population
\bar{x} when $\mathrm{n}=2$
\bar{x} when $\mathrm{n}=30$

Sampling Distribution for the Sample Mean Summary

Shape, Center and Spread of Population	Shape of sample	Center of sample	Spread of sample
Population is normal with mean μ and standard deviation σ.	Regardless of the sample size n , the shape of the distribution of the sample mean is normal	$\mu_{\bar{x}}=\mu$	$\sigma_{\bar{x}}=\frac{\sigma_{\bar{x}}}{\sqrt{n}}$
Population is not normal with mean μ and standard deviation σ.	As the sample size n increases, the distribution of the sample mean becomes approximately normal	$\mu_{\bar{x}}=\mu$	$\sigma_{\bar{x}}=\frac{\sigma_{X}}{\sqrt{n}}$

Sampling Distribution:

$$
\begin{gathered}
\boldsymbol{P}(\bar{x}>\boldsymbol{c})=1-P\left(z<\frac{c-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)=1-P\left(z<\frac{c-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right) \\
\boldsymbol{P}(\bar{x}<\boldsymbol{c})=P\left(z<\frac{c-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)=P\left(z<\frac{c-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right) \\
\begin{array}{r}
P\left(\boldsymbol{c}_{1}<\bar{x}<\boldsymbol{c}_{2}\right)=P\left(z<\frac{c_{2}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right)-P\left(z<\frac{\boldsymbol{c}_{1}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}\right) \\
\\
=P\left(z<\frac{c_{2}-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right)-P\left(z<\frac{\boldsymbol{c}_{1}-\mu_{x}}{\frac{\sigma_{x}}{\sqrt{n}}}\right)
\end{array}
\end{gathered}
$$

